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Orthogonal Vector Basis Functions for Time Domain Finite Element 
Solution of the Vector Wave Equation 

Daniel A. White 
Lawrence Livermore National Laboratory 

Abstract-In this paper we consider the solution of 
the vector wave equation by a discrete time vector fi- 
nite element method. The popular linear edge basis 
functions are augmented such that the resulting ca- 
pacitance matrix is diagonal, resulting in an explicit 
method. The accuracy and efficiency of the method is 
investigated via computer experiments. 

I. INTR~DuOTI~N 

The vector wave equation for the electric field is a 
time dependent second order partial differential equation 
(PDE) .4pplicatiou of the Galerkin procedure to the vari- 
ational form of the vector wave equation results in an sys- 
tem of ordinary differential equations (ODE). Integrating 
this system of ODE’s requires the solution of a large lin- 
ear system (the “capacitance matrix”) at every time step. 
When linear edge basis functions (also known as Nedelec, 
Whitney, and H(curl) functions) [l]-[5] are used the ca- 
pacitance matrix is sparse, but non-diagonal, which is a 
significant drawback compared to completely explicit fi- 
nite difference and finite volume methods. 

The conjugate gradient (CG) algorithm has been used 
to solve the capacitance matrix system at every time step, 
with both explicit [6], [7] and implicit [8], [9] time integra- 
tion methods. In [lo] a variety of methods for solving 
the linear system were investigated, including precondi- 
tioned CG and fixed-point iterative methods. These ref- 
erences show that using an iterative method for the capac- 
itance matrix systern yields an accurate field solution, but 
that this approach is computationally intensive. Several 
researchers have attempted to eliminate the capacitance 
matrix by mass lumping or by point matching [ll]-[13]. 
These approaches are intriguing, but the accuracy and 
stability properties are not well understood since they are 
not true Galerkin methods 

In this paper a method for creating a diagonal mass ma- 
trix is presented. The linear edge basis functions are aug- 
mented such that the new basis functions are orthogonal 
with respect to a particular inner product. The resulting 
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mass matrix is therefore diagonal and can be eliminated, 
resulting in a completely explicit method. The new set of 
basis functions is larger than the original set by a factor of 
three. The accuracy and efficiency of this approach is in- 
vestigated via computer experiments on two-dimensional 
triangular grids. 

II. GALERKIN FORMULATION 

We are concerned with the computer sirnulation of time 
dependent electromagnetic fields in a generic inhomoge- 
neous volume 1;2 consisting of solid dielectric, magnetic, 
and conductive materials. There is no free charge in the 
volume. An appropriate PDE is the vector wave equation 
for the electric field ,!? 

For simplicity it is assumed that the dielectric permittiv- 
ity 6 and the magnetic permeability p are functions of 
position only, i e only linear, non-dispersive media will 
be considered The electric field on the boundary I? is 
specified by + + 

fixE=Ebc on I, (2) 
and the two initial conditions 

E(t = 0) = & in n, (3) 

complete the description of the PDE Typically the initial 
conditions are zero and the problem is driven by either the 
time dependent current source J’or the time dependent 
boundary condition l& 

The variational form of (1) is find l? E II(curl) that 
satisfies 

g (62, E*) = (p-77 x I?:‘, v x 2) -; (f, E*) (5) 

for all i+ E He(curl), where 

(6) 

and 

Ho(cwl) = (77 : GE H(cwl),ii x v’ = O} (7) 



In the finite element solution of (5) the space H(curl) 
is approximated by a finite dimension subspace Wh c 
N(c~1) defined on a mesh, yielding a system of ODE’s 

a” 
A8t2&=C?I+S. (8) 

The variable e is the array of degrees of freedom (DOF) 
and the variable S is the array of source terms, which in- 
cludes contributions from both the independent current 
source J and the boundary condition &. The matrix A 
is a symmetric positive definite matrix, with units of ca- 
pacitance, which resembles the mass matrix of continuum 
mechanics. The matrices A and C are given by 

Cij= /A-‘VX@i,VX@j ( > 
) (10) 

where @i is the basis function associated with edge i. 

A Oriyinal edge basis functions 

The linear edge basis functions for a triangular mesh 
are given by 

K’i = NjVNk - NkVNi, (11) 

where Nk is the linear nodal basis function associated 
with node k, and edge i connects nodes j and k These 
functions enforce tangential continuity of fields across cell 
edges but allow discontinuous normal components, which 
is required for inhomogeneous problems. The finite ele- 
ment space Wh consists of the collection of all the linear 
edge basis functions, and therefore has dimension of N,, 
the number of edges in the mesh. 

B Au,gmented edge basis functions 

As mentioned in the introduction the edge elements de- 
fined by (11) are not orthogonal. The construction of an 
orthogonal set of basis functions begins with the definition 
of a new inner product. For every cell we define 

1. zero tangential component along the the edges of the 
mesh, 

2. each function l?i has a non-zero normal component 
for edge i only 

3. these functions are orthogonal to each other accord- 
ing the the inner product (12) 

Let the collection of all the auxilary basis functions be 
denoted by Bh, which has dimension 3N, where N, is the 
number of cells in the mesh. 

Using the auxilary basis functions (13), new edge basis 
functions Z are defined by 

(14) 

within each cell. Due to property 1, these functions have 
the same tangential components on cell edges as the orig- 
inal edge elements, hence continuity of tangential field 
components is preserved. Due to property 2, the new edge 
basis functions 2 have zero normal component on the cell 
edges Therefore every Zi is orthogonal to every l?j. Since 
the original I@i functions have non-zero tangential com- 
ponent on edge i only, the new edge basis functions 2, are 
orthogonal to each other as well. Let the collection of all 
the new edge basis functions 2 be denoted by zh. 

C Explicit system, of ODE’s 

Using our inner product (12), we define an approximate 
variational form of the vector wave equation 

The electric field is constrained to be in the space 
Fh = Bh II Zh, and the test space is given by F,h = 
{i? : v’ E Fh, fi, x v’ = O}. This results in a new system of 
ODE’s 

82 
Ddt”e=Ke+s;. (16) 

(12) 
where the matrices are given by 

i=l 
Dij = (EFi, Fj) (17) 

where mi denotes the midpoint of edge i The coefficients 
oi are chosen such that (12) is a second order accurate Kii = (P-IV X Fi,V X Fj) (18) 
approximation to (6). 

Three auxiliary basis functions are defined for every 
Since D is a diagonal matrix, (16) can be easily integrated 

cell. These basis functions are given by 
using the leapfrog method 

-4 
Bi = NjNkfi,i, (13) 

$“+‘) = (21 + (at)-” I>+) grl _ En--l, (19) 

where r?i is the unit normal to edge i These auxiliary In the following Equations (1 l)-( 19) will be referred to as 
basis functions have the properties: the orthogonal finite element method 



Fig 1 An example 600 cell grid of 1 by 3 rectangular cavity 

III. RESULTS 

In this section the orthogonal finite element method de- 
scribed above is validated by comparing computed results 
to analytical results. The first experiment consists of a 
lm by 1/3m rectangular cavity with perfectly conducting 
walls. The electric field is confined to the 2 - y plane and 
the magnetic field is aligned in the z direction. This is 
often referred to as a TEZ mode. The speed of light is set 
to unity for convenience. A time domain method can be 
used to compute the resonant frequencies of a cavity by 
exciting the cavity with a pulse and evolving the electric 
field in time. The amplitude of the electric field along a 
selected edge is is stored for every time step. This sig- 
nal can then be multiplied by a suitable window function 
and the Fourier transformed to yield the power spectrum 
of the signal. The peaks in the power spectrum are the 
resonant frequencies of the cavity. 

The rectangular cavity is modeled using a sequence of 
triangular grids. An example grid is shown in Fig. 1. For 
each grid the electric field is evolved for loos, with the 
time step chosen such that the method is stable. The 
CPU time for the orthogonal finite element method is 
compared to that for the original method in Table I. It is 
interesting to note that using the orthogonal basis func- 
tions increased the number of DOF by a factor of three 
(approximately) but reduced the CPU time by a factor 
of three (approximately). The capacitance matrix for the 
original method was solved using diagonal preconditioned 
conjugate gradient, with a maximum of 15 iterations. 

As a second example we consider the resonant frequen- 
cies of a circular cavity of radius lm. As with the rectan- 
gular cavity above, we are interested in the case of per- 

TABLE I 
Rectangular cavity C:PU time 

Original Orthogonal 
Cells DOF CPU DOF CPU 
600 245 84.9 695 34.4 
2400 940 863.5 2740 272.2 
5400 2085 2989.8 6135 972.9 
9600 3680 7173.4 10880 2166.9 

fectly conducting walls and transverse electric fields. The 
circular cavity was modeled using a sequence of triangular 
grids. An example grid is shown in Fig. 2. The simulation 
procedure is the same as that for the rectangular cavity 
The CPU time for the orthogonal finite element method 
is compared to that for the original method in Table II 
Again, the CPU time is reduced by a factor of three even 
though the number of DOF is increased. 

TABLE II 
Rectangular cavity C:PU time 

Original Orthogonal 
Cells DOF CPU DOF CPU 
74 101 3 45 323 1 68 
296 424 34.58 1312 14 18 
904 1316 241.66 4028 91 52 
3592 5308 9725.1 16084 3249.7 

The above results indicate that the use of orthogonal 
vector basis functions can significantly decrease the re- 
quired CPU time for a given calculation. It is also im- 
portant to discuss the accuracy of the method. The time 
domain vector finite element method with the original lin- 
ear edge basis functions is known to have a second order 
accurate numerical dispersion relation for general trian- 
gular grids [14]. The accuracy of the numerical dispersion 
relation is equal to the rate of convergence of computed 
resonant frequencies of cavities, hence cavity simulations 
can be used to determine the accuracy of a time domain 
method. 

For the rectangular cavity described above the fre- 
quency of the TE14 mode is 2.5 Hz. The logarithm of 
the error of this frequency is shown in Fig. 3 versus the 
logarithm of the cell size (lower curve). The slope of the 
least-square fit line is -2 04, indicating that the resonant 
frequency calculation is converging at second order. 

For the circular cavity described above the frequency of 
the T&l mode is 0.29303 Hz. The logarithm of the error 
of this frequency is shown in Fig. 3 versus the logarithm of 
the cell size (upper curve). The slope of the least-square 
fit line is -1.98, indicating that the resonant frequency 
calculation is again converging at second order. 
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Fig 2. An example 296 cell grid of circular cavity 

IV. CONCLUSIONS 

An approximate variational form of the vector wave 
equation is solved using the Galerkin formulation. The 
approximate variational form uses an new inner product 
which is a second order accurate approximation of the 
traditional inner product. The original linear edge basis 
functions are augmented such that the new basis functions 
are orthogonal with respect this the new inner product. 
This procedure guarantees a diagonal capacitance matrix 
While the new system of ODE’s is larger than the original 
system, it can be integrated significantly faster the origi- 
nal system For a given grid the orthogonal finite element 
method is approximately three times faster than the orig- 
inal method. The orthogonal basis function method has 
the same second order accuracy as the original method. 
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